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Search problems are computational problems where we have to find a solution or inform

that no solutions exist. For instance,

SEARCH_PATH: Given a graph G and vertices u,v € G, find a path from u to v or inform

if no such paths exist.

Decision problems are computational problems where we have to decide whether

a solution exists. For instance,

DEC_PATH: Given a graph G and vertices u,v € (5, decide if a path from 1 to v exists.
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Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:
1. Solve SEARCH_PATH on (G, u,v).

2. Answer Yes or No depending on the answer from the 1st step.
Observation: If DEC_PATH is not polynomial-time solvable, then so is SEARCH_PATH.

We will focus on decision problems because:
® They are mathematically simple.

® | ower bounds for decision problems implies lower bounds for search problems.

Note: We will assume that in the problems an input is always provided in encoded binary form.
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Defn: P is the set of decision problems that can be solved in polynomial time, i.e., O(n°),

where ¢ > 0 and n is the length of the input.

Binary encoding of x, y, and i.

Some problems in ‘P/
® MULT = {{x,vy,i) | The ith bitofx-yis 1}
® PRIMES = {(x) | x is a prime number}

® SORT = {(x{,X,,...,X,,1) | The ith bit of sorted sequence (xkl,xkz, ...,xkn) is 1}

Some problems not known to be in P:
e Gl={(G,G,) | Graphs G, and G, are isomorphic}
® FACTOR = {{x,l,u) | x has a factor y such that [ <y < u}
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Why P captures efficiency?

® Time bounds less than n do not allow to even read the entire input.

2 309 nlOO

® |n practice, we find algorithms with time n<, n’, etc. (not n . etc.).

® Problems with first polytime algorithm with high complexity, say O(n*"), usually get
improved to, say o).
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Some problems not known to be in P:

o INDSET = {(G, k) | G has an independent set of size k}
Not polytime solvable,

o HAMILTONIANCYCLE = {{(G) | G has a hamiltonian cycle} ) but solutions are

verifiable in polytime.

e Gl={(G,,G,) | Graphs G, and G, are isomorphic}

Informal Definition: NP captures the set of decisions problems whose solutions can be

veritied in polynomial time.

Note: NP stands for nondeterministic polynomial time.



