Lecture 32

P, NP

Two Sides of Computation

Two Sides of Computation

Possibility

Two Sides of Computation

Possibility

Impossibility

Two Sides of Computation

Possibility: Algorithms

Impossibility

Two Sides of Computation

Possibility: Algorithms

Impossibility: Complexity Theory

Two Sides of Computation

Possibility: Algorithms

Deals with creating efficient algorithms for computational problems.

Impossibility: Complexity Theory

Two Sides of Computation

Possibility: Algorithms

Deals with creating efficient algorithms for computational problems.

Impossibility: Complexity Theory

Deals with proving non-existence of efticient algorithms for computational problem:s.

Two Sides of Computation

Possibility: Algorithms

Deals with creating efficient algorithms for computational problems.

Impossibility: Complexity Theory

Deals with proving non-existence of efticient algorithms for computational problem:s.
O e ™

/

Mostly decision problems.

Search vs Decision Problem

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform

that no solutions exist.

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform

that no solutions exist. For instance,

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform

that no solutions exist. For instance,

SEARCH_PATH: Given a graph G and vertices u,v € G, find a path from u to v or inform

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform

that no solutions exist. For instance,

SEARCH_PATH: Given a graph G and vertices u,v € G, find a path from u to v or inform

if no such paths exist.

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform

that no solutions exist. For instance,

SEARCH_PATH: Given a graph G and vertices u,v € G, find a path from u to v or inform

if no such paths exist.

Decision problems are computational problems where we have to decide whether

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform

that no solutions exist. For instance,

SEARCH_PATH: Given a graph G and vertices u,v € G, find a path from u to v or inform

if no such paths exist.

Decision problems are computational problems where we have to decide whether

a solution exists.

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform

that no solutions exist. For instance,

SEARCH_PATH: Given a graph G and vertices u,v € G, find a path from u to v or inform

if no such paths exist.

Decision problems are computational problems where we have to decide whether

a solution exists. For instance,

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform

that no solutions exist. For instance,

SEARCH_PATH: Given a graph G and vertices u,v € G, find a path from u to v or inform

if no such paths exist.

Decision problems are computational problems where we have to decide whether

a solution exists. For instance,

DEC_PATH: Given a graph G and vertices u,v € (5, decide if a path from 1 to v exists.

Search vs Decision Problem

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:
1. Solve SEARCH_PATH on (G, u,v).

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:
1. Solve SEARCH_PATH on (G, u,v).

2. Answer Yes or No depending on the answer from the 1st step.

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:
1. Solve SEARCH_PATH on (G, u,v).

2. Answer Yes or No depending on the answer from the 1st step.

Observation:

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:
1. Solve SEARCH_PATH on (G, u,v).

2. Answer Yes or No depending on the answer from the 1st step.

Observation: |f SEARCH_PATH is polynomial-time solvable, then so is DEC_PATH.

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:
1. Solve SEARCH_PATH on (G, u,v).

2. Answer Yes or No depending on the answer from the 1st step.

Observation:

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:
1. Solve SEARCH_PATH on (G, u,v).

2. Answer Yes or No depending on the answer from the 1st step.

Observation: |f DEC_PATH is not polynomial-time solvable, then so is SEARCH_PATH.

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:
1. Solve SEARCH_PATH on (G, u,v).

2. Answer Yes or No depending on the answer from the 1st step.
Observation: |f DEC_PATH is not polynomial-time solvable, then so is SEARCH_PATH.

We will focus on decision problems because:

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:
1. Solve SEARCH_PATH on (G, u,v).

2. Answer Yes or No depending on the answer from the 1st step.
Observation: |f DEC_PATH is not polynomial-time solvable, then so is SEARCH_PATH.

We will focus on decision problems because:

® They are mathematically simple.

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:
1. Solve SEARCH_PATH on (G, u,v).

2. Answer Yes or No depending on the answer from the 1st step.
Observation: |f DEC_PATH is not polynomial-time solvable, then so is SEARCH_PATH.

We will focus on decision problems because:
® They are mathematically simple.

® | ower bounds for decision problems implies lower bounds for search problems.

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:
1. Solve SEARCH_PATH on (G, u,v).

2. Answer Yes or No depending on the answer from the 1st step.
Observation: If DEC_PATH is not polynomial-time solvable, then so is SEARCH_PATH.

We will focus on decision problems because:
® They are mathematically simple.

® | ower bounds for decision problems implies lower bounds for search problems.

Search vs Decision Problem

Solving DEC_PATH via SEARCH_PATH:
1. Solve SEARCH_PATH on (G, u,v).

2. Answer Yes or No depending on the answer from the 1st step.
Observation: If DEC_PATH is not polynomial-time solvable, then so is SEARCH_PATH.

We will focus on decision problems because:
® They are mathematically simple.

® | ower bounds for decision problems implies lower bounds for search problems.

Note: We will assume that in the problems an input is always provided in encoded binary form.

Complexity Class P

Complexity Class P

Defn: P is the set of decision problems that can be solved in polynomial time, i.e., O(n°),

Complexity Class P

Defn: P is the set of decision problems that can be solved in polynomial time, i.e., O(n°),

where ¢ > 0 and n is the length of the input.

Complexity Class P

Defn: P is the set of decision problems that can be solved in polynomial time, i.e., O(n°),

where ¢ > 0 and n is the length of the input.

Some problems in P:

Complexity Class P

Defn: P is the set of decision problems that can be solved in polynomial time, i.e., O(n°),

where ¢ > 0 and n is the length of the input.

Some problems in P:

® MULT = {{x,vy,i) | The ith bitofx-yis 1}

Complexity Class P

Defn: P is the set of decision problems that can be solved in polynomial time, i.e., O(n°),

where ¢ > 0 and n is the length of the input.

Binary encoding of x, y, and i.

Some problems in ‘P/
® MULT = {{x,vy,i) | The ith bitofx-yis 1}

Complexity Class P

Defn: P is the set of decision problems that can be solved in polynomial time, i.e., O(n°),

where ¢ > 0 and n is the length of the input.

Binary encoding of x, y, and i.

Some problems in ‘P/
® MULT = {{x,Vy,i) | The ith bitof x - y is 1}\

Decision problems can be expressed as sets.

Complexity Class P

Defn: P is the set of decision problems that can be solved in polynomial time, i.e., O(n°),

where ¢ > 0 and n is the length of the input.

Binary encoding of x, y, and i.

Some problems in ‘P/
® MULT = {{x,vy,i) | The ith bitofx-yis 1}
® PRIMES = {(x) | x is a prime number}

Complexity Class P

Defn: P is the set of decision problems that can be solved in polynomial time, i.e., O(n°),

where ¢ > 0 and n is the length of the input.

Binary encoding of x, y, and i.

Some problems in ‘P/

® MULT = {{x,y,1) | The ith bit of x - yis 1} The polytime algorithm you have in your mind
® PRIMES = {(x) | x is a prime number} «—— is actually an exponential time algorithm.

Complexity Class P

Defn: P is the set of decision problems that can be solved in polynomial time, i.e., O(n°),

where ¢ > 0 and n is the length of the input.

Binary encoding of x, y, and i.

Some problems in ‘P/
® MULT = {{x,vy,i) | The ith bitofx-yis 1}
® PRIMES = {(x) | x is a prime number}

Complexity Class P

Defn: P is the set of decision problems that can be solved in polynomial time, i.e., O(n°),

where ¢ > 0 and n is the length of the input.

Binary encoding of x, y, and i.

Some problems in ‘P/
® MULT = {{x,vy,i) | The ith bitofx-yis 1}
® PRIMES = {(x) | x is a prime number}

® SORT = {(x{,X,,...,X,,1) | The ith bit of sorted sequence (xkl,xkz, ...,xkn) is 1}

Complexity Class P

Defn: P is the set of decision problems that can be solved in polynomial time, i.e., O(n°),

where ¢ > 0 and n is the length of the input.

Binary encoding of x, y, and i.

Some problems in ‘P/
® MULT = {{x,vy,i) | The ith bitofx-yis 1}
® PRIMES = {(x) | x is a prime number}

® SORT = {(x{,X,,...,X,,1) | The ith bit of sorted sequence (xkl,xkz, ...,xkn) is 1}

Some problems not known to be in P:

Complexity Class P

Defn: P is the set of decision problems that can be solved in polynomial time, i.e., O(n°),

where ¢ > 0 and n is the length of the input.

Binary encoding of x, y, and i.

Some problems in ‘P/
® MULT = {{x,vy,i) | The ith bitofx-yis 1}
® PRIMES = {(x) | x is a prime number}

® SORT = {(x{,X,,...,X,,1) | The ith bit of sorted sequence (xkl,xkz, ...,xkn) is 1}

Some problems not known to be in P:

e Gl={(G,G,) | Graphs G, and G, are isomorphic}

Complexity Class P

Defn: P is the set of decision problems that can be solved in polynomial time, i.e., O(n°),

where ¢ > 0 and n is the length of the input.

Binary encoding of x, y, and i.

Some problems in ‘P/
® MULT = {{x,vy,i) | The ith bitofx-yis 1}
® PRIMES = {(x) | x is a prime number}

® SORT = {(x{,X,,...,X,,1) | The ith bit of sorted sequence (xkl,xkz, ...,xkn) is 1}

Some problems not known to be in P:
e Gl={(G,G,) | Graphs G, and G, are isomorphic}
® FACTOR = {{x,l,u) | x has a factor y such that [<y < u}

Complexity Class P

Complexity Class P

Why P captures efficiency?

Complexity Class P

Why P captures efficiency?

® Time bounds less than n do not allow to even read the entire input.

Complexity Class P

Why P captures efficiency?

® Time bounds less than n do not allow to even read the entire input.

2 309 nlOO

® |n practice, we find algorithms with time n<, n’, etc. (not n . etc.).

Complexity Class P

Why P captures efficiency?

® Time bounds less than n do not allow to even read the entire input.

2 309 nlOO

® |n practice, we find algorithms with time n<, n’, etc. (not n . etc.).

® Problems with first polytime algorithm with high complexity, say O(n*"), usually get

Complexity Class P

Why P captures efficiency?

® Time bounds less than n do not allow to even read the entire input.

2 309 nlOO

® |n practice, we find algorithms with time n<, n’, etc. (not n . etc.).

® Problems with first polytime algorithm with high complexity, say O(n*"), usually get
improved to, say o).

Complexity Class NP

Complexity Class NP

Some problems not known to be in P:

Complexity Class NP

Some problems not known to be in P:

® INDSET = {(G, k) | G has an independent set of size k}

Complexity Class NP

Some problems not known to be in P:

® INDSET = {(G, k) | G has an independent set of size k}
¢ HAMILTONIANCYCLE = {(G) | G has a hamiltonian cycle}

Complexity Class NP

Some problems not known to be in P:

® INDSET = {(G, k) | G has an independent set of size k}
¢ HAMILTONIANCYCLE = {(G) | G has a hamiltonian cycle}

e Gl={(G,,G,) | Graphs G, and G, are isomorphic}

Complexity Class NP

Some problems not known to be in P:

o INDSET = {(G, k) | G has an independent set of size k}
Not polytime solvable,
e HAMILTONIANCYCLE = {{(G) | G has a hamiltonian cycle} but solutions are

verifiable in polytime.

e Gl={(G,,G,) | Graphs G, and G, are isomorphic}

Complexity Class NP

Some problems not known to be in P:

o INDSET = {(G, k) | G has an independent set of size k}
Not polytime solvable,

o HAMILTONIANCYCLE = {{(G) | G has a hamiltonian cycle}) but solutions are

verifiable in polytime.

e Gl={(G,,G,) | Graphs G, and G, are isomorphic}

Informal Definition:

Complexity Class NP

Some problems not known to be in P:

o INDSET = {(G, k) | G has an independent set of size k}
Not polytime solvable,

o HAMILTONIANCYCLE = {{(G) | G has a hamiltonian cycle}) but solutions are

verifiable in polytime.

e Gl={(G,,G,) | Graphs G, and G, are isomorphic}

Informal Definition: NP captures the set of decisions problems whose solutions can be

Complexity Class NP

Some problems not known to be in P:

o INDSET = {(G, k) | G has an independent set of size k}
Not polytime solvable,

o HAMILTONIANCYCLE = {{(G) | G has a hamiltonian cycle}) but solutions are

verifiable in polytime.

e Gl={(G,,G,) | Graphs G, and G, are isomorphic}

Informal Definition: NP captures the set of decisions problems whose solutions can be

veritied in polynomial time.

Complexity Class NP

Some problems not known to be in P:

o INDSET = {(G, k) | G has an independent set of size k}
Not polytime solvable,

o HAMILTONIANCYCLE = {{(G) | G has a hamiltonian cycle}) but solutions are

verifiable in polytime.

e Gl={(G,,G,) | Graphs G, and G, are isomorphic}

Informal Definition: NP captures the set of decisions problems whose solutions can be

veritied in polynomial time.

Note: NP stands for nondeterministic polynomial time.

