

Lecture 32

P, NP

Two Sides of Computation

Two Sides of Computation

Possibility

Two Sides of Computation

Possibility

Impossibility

Two Sides of Computation

Possibility: Algorithms

Impossibility

Two Sides of Computation

Possibility: Algorithms

Impossibility: Complexity Theory

Two Sides of Computation

Possibility: Algorithms

Deals with creating efficient algorithms for computational problems.

Impossibility: Complexity Theory

Two Sides of Computation

Possibility: Algorithms

Deals with creating efficient algorithms for computational problems.

Impossibility: Complexity Theory

Deals with proving non-existence of efficient algorithms for computational problems.

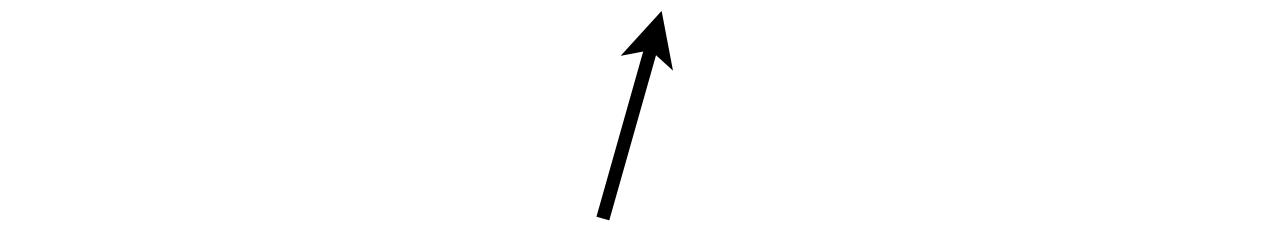
Two Sides of Computation

Possibility: Algorithms

Deals with creating efficient algorithms for computational problems.

Impossibility: Complexity Theory

Deals with proving non-existence of efficient algorithms for computational problems.



Mostly decision problems.

Search vs Decision Problem

Search vs Decision Problem

Search problems are computational problems where we have to **find** a solution or inform

Search vs Decision Problem

Search problems are computational problems where we have to **find** a solution or inform that no solutions exist.

Search vs Decision Problem

Search problems are computational problems where we have to **find** a solution or inform that no solutions exist. For instance,

Search vs Decision Problem

Search problems are computational problems where we have to **find** a solution or inform that no solutions exist. For instance,

SEARCH_PATH: Given a graph G and vertices $u, v \in G$, find a path from u to v or inform

Search vs Decision Problem

Search problems are computational problems where we have to **find** a solution or inform that no solutions exist. For instance,

SEARCH_PATH: Given a graph G and vertices $u, v \in G$, find a path from u to v or inform if no such paths exist.

Search vs Decision Problem

Search problems are computational problems where we have to **find** a solution or inform that no solutions exist. For instance,

SEARCH_PATH: Given a graph G and vertices $u, v \in G$, find a path from u to v or inform if no such paths exist.

Decision problems are computational problems where we have to **decide** whether

Search vs Decision Problem

Search problems are computational problems where we have to **find** a solution or inform that no solutions exist. For instance,

SEARCH_PATH: Given a graph G and vertices $u, v \in G$, find a path from u to v or inform if no such paths exist.

Decision problems are computational problems where we have to **decide** whether a solution exists.

Search vs Decision Problem

Search problems are computational problems where we have to **find** a solution or inform that no solutions exist. For instance,

SEARCH_PATH: Given a graph G and vertices $u, v \in G$, find a path from u to v or inform if no such paths exist.

Decision problems are computational problems where we have to **decide** whether a solution exists. For instance,

Search vs Decision Problem

Search problems are computational problems where we have to **find** a solution or inform that no solutions exist. For instance,

SEARCH_PATH: Given a graph G and vertices $u, v \in G$, find a path from u to v or inform if no such paths exist.

Decision problems are computational problems where we have to **decide** whether a solution exists. For instance,

DEC_PATH: Given a graph G and vertices $u, v \in G$, decide if a path from u to v exists.

Search vs Decision Problem

Solving DEC_PATH via $SEARCH_PATH$:

Search vs Decision Problem

Solving DEC_PATH via $SEARCH_PATH$:

1. Solve $SEARCH_PATH$ on (G, u, v) .

Search vs Decision Problem

Solving DEC_PATH via $SEARCH_PATH$:

1. Solve $SEARCH_PATH$ on (G, u, v) .
2. Answer Yes or No depending on the answer from the 1st step.

Search vs Decision Problem

Solving DEC_PATH via $SEARCH_PATH$:

1. Solve $SEARCH_PATH$ on (G, u, v) .
2. Answer Yes or No depending on the answer from the 1st step.

Observation:

Search vs Decision Problem

Solving DEC_PATH via $SEARCH_PATH$:

1. Solve $SEARCH_PATH$ on (G, u, v) .
2. Answer Yes or No depending on the answer from the 1st step.

Observation: If $SEARCH_PATH$ is polynomial-time solvable, then so is DEC_PATH .

Search vs Decision Problem

Solving DEC_PATH via $SEARCH_PATH$:

1. Solve $SEARCH_PATH$ on (G, u, v) .
2. Answer Yes or No depending on the answer from the 1st step.

Observation:

Search vs Decision Problem

Solving DEC_PATH via $SEARCH_PATH$:

1. Solve $SEARCH_PATH$ on (G, u, v) .
2. Answer Yes or No depending on the answer from the 1st step.

Observation: If DEC_PATH is not polynomial-time solvable, then so is $SEARCH_PATH$.

Search vs Decision Problem

Solving DEC_PATH via $SEARCH_PATH$:

1. Solve $SEARCH_PATH$ on (G, u, v) .
2. Answer Yes or No depending on the answer from the 1st step.

Observation: If DEC_PATH is not polynomial-time solvable, then so is $SEARCH_PATH$.

We will focus on decision problems because:

Search vs Decision Problem

Solving DEC_PATH via $SEARCH_PATH$:

1. Solve $SEARCH_PATH$ on (G, u, v) .
2. Answer Yes or No depending on the answer from the 1st step.

Observation: If DEC_PATH is not polynomial-time solvable, then so is $SEARCH_PATH$.

We will focus on decision problems because:

- They are mathematically simple.

Search vs Decision Problem

Solving DEC_PATH via $SEARCH_PATH$:

1. Solve $SEARCH_PATH$ on (G, u, v) .
2. Answer Yes or No depending on the answer from the 1st step.

Observation: If DEC_PATH is not polynomial-time solvable, then so is $SEARCH_PATH$.

We will focus on decision problems because:

- They are mathematically simple.
- Lower bounds for decision problems implies lower bounds for search problems.

Search vs Decision Problem

Solving DEC_PATH via $SEARCH_PATH$:

1. Solve $SEARCH_PATH$ on (G, u, v) .
2. Answer Yes or No depending on the answer from the 1st step.

Observation: If DEC_PATH is not polynomial-time solvable, then so is $SEARCH_PATH$.

We will focus on decision problems because:

- They are mathematically simple.
- Lower bounds for decision problems implies lower bounds for search problems.

Search vs Decision Problem

Solving DEC_PATH via $SEARCH_PATH$:

1. Solve $SEARCH_PATH$ on (G, u, v) .
2. Answer Yes or No depending on the answer from the 1st step.

Observation: If DEC_PATH is not polynomial-time solvable, then so is $SEARCH_PATH$.

We will focus on decision problems because:

- They are mathematically simple.
- Lower bounds for decision problems implies lower bounds for search problems.

Note: We will assume that in the problems an **input** is always provided in **encoded binary form**.

Complexity Class P

Complexity Class P

Defn: P is the set of decision problems that can be solved in **polynomial time**, i.e., $O(n^c)$,

Complexity Class P

Defn: P is the set of decision problems that can be solved in **polynomial time**, i.e., $O(n^c)$, where $c \geq 0$ and n is the length of the input.

Complexity Class P

Defn: P is the set of decision problems that can be solved in **polynomial time**, i.e., $O(n^c)$, where $c \geq 0$ and n is the length of the input.

Some problems in P:

Complexity Class P

Defn: P is the set of decision problems that can be solved in **polynomial time**, i.e., $O(n^c)$, where $c \geq 0$ and n is the length of the input.

Some problems in P:

- $MULT = \{\langle x, y, i \rangle \mid \text{The } i\text{th bit of } x \cdot y \text{ is 1}\}$

Complexity Class P

Defn: P is the set of decision problems that can be solved in **polynomial time**, i.e., $O(n^c)$, where $c \geq 0$ and n is the length of the input.

Some problems in P: Binary encoding of x, y , and i .

- $MULT = \{\langle x, y, i \rangle \mid \text{The } i\text{th bit of } x \cdot y \text{ is 1}\}$

Complexity Class P

Defn: P is the set of decision problems that can be solved in **polynomial time**, i.e., $O(n^c)$, where $c \geq 0$ and n is the length of the input.

Some problems in P: Binary encoding of x, y , and i .

- $MULT = \{\langle x, y, i \rangle \mid \text{The } i\text{th bit of } x \cdot y \text{ is 1}\}$

Decision problems can be expressed as sets.

Complexity Class P

Defn: P is the set of decision problems that can be solved in **polynomial time**, i.e., $O(n^c)$, where $c \geq 0$ and n is the length of the input.

Some problems in P: Binary encoding of x, y , and i .

- $MULT = \{\langle x, y, i \rangle \mid \text{The } i\text{th bit of } x \cdot y \text{ is 1}\}$
- $PRIMES = \{\langle x \rangle \mid x \text{ is a prime number}\}$

Complexity Class P

Defn: P is the set of decision problems that can be solved in **polynomial time**, i.e., $O(n^c)$, where $c \geq 0$ and n is the length of the input.

Some problems in P:

- $MULT = \{\langle x, y, i \rangle \mid \text{The } i\text{th bit of } x \cdot y \text{ is } 1\}$
- $PRIMES = \{\langle x \rangle \mid x \text{ is a prime number}\}$

Binary encoding of x, y , and i .

The polytime algorithm you have in your mind
is actually an exponential time algorithm.

Complexity Class P

Defn: P is the set of decision problems that can be solved in **polynomial time**, i.e., $O(n^c)$, where $c \geq 0$ and n is the length of the input.

Some problems in P: Binary encoding of x, y , and i .

- $MULT = \{\langle x, y, i \rangle \mid \text{The } i\text{th bit of } x \cdot y \text{ is 1}\}$
- $PRIMES = \{\langle x \rangle \mid x \text{ is a prime number}\}$

Complexity Class P

Defn: P is the set of decision problems that can be solved in **polynomial time**, i.e., $O(n^c)$, where $c \geq 0$ and n is the length of the input.

Some problems in P: Binary encoding of x, y , and i .

- $MULT = \{\langle x, y, i \rangle \mid \text{The } i\text{th bit of } x \cdot y \text{ is 1}\}$
- $PRIMES = \{\langle x \rangle \mid x \text{ is a prime number}\}$
- $SORT = \{\langle x_1, x_2, \dots, x_n, i \rangle \mid \text{The } i\text{th bit of sorted sequence } (x_{k_1}, x_{k_2}, \dots, x_{k_n}) \text{ is 1}\}$

Complexity Class P

Defn: P is the set of decision problems that can be solved in **polynomial time**, i.e., $O(n^c)$, where $c \geq 0$ and n is the length of the input.

Some problems in P: Binary encoding of x, y , and i .

- $MULT = \{\langle x, y, i \rangle \mid \text{The } i\text{th bit of } x \cdot y \text{ is 1}\}$
- $PRIMES = \{\langle x \rangle \mid x \text{ is a prime number}\}$
- $SORT = \{\langle x_1, x_2, \dots, x_n, i \rangle \mid \text{The } i\text{th bit of sorted sequence } (x_{k_1}, x_{k_2}, \dots, x_{k_n}) \text{ is 1}\}$

Some problems not known to be in P:

Complexity Class P

Defn: P is the set of decision problems that can be solved in **polynomial time**, i.e., $O(n^c)$, where $c \geq 0$ and n is the length of the input.

Some problems in P: Binary encoding of x, y , and i .

- $MULT = \{\langle x, y, i \rangle \mid \text{The } i\text{th bit of } x \cdot y \text{ is 1}\}$
- $PRIMES = \{\langle x \rangle \mid x \text{ is a prime number}\}$
- $SORT = \{\langle x_1, x_2, \dots, x_n, i \rangle \mid \text{The } i\text{th bit of sorted sequence } (x_{k_1}, x_{k_2}, \dots, x_{k_n}) \text{ is 1}\}$

Some problems not known to be in P:

- $GI = \{\langle G_1, G_2 \rangle \mid \text{Graphs } G_1 \text{ and } G_2 \text{ are isomorphic}\}$

Complexity Class P

Defn: P is the set of decision problems that can be solved in **polynomial time**, i.e., $O(n^c)$, where $c \geq 0$ and n is the length of the input.

Some problems in P: Binary encoding of x, y , and i .

- $MULT = \{\langle x, y, i \rangle \mid \text{The } i\text{th bit of } x \cdot y \text{ is 1}\}$
- $PRIMES = \{\langle x \rangle \mid x \text{ is a prime number}\}$
- $SORT = \{\langle x_1, x_2, \dots, x_n, i \rangle \mid \text{The } i\text{th bit of sorted sequence } (x_{k_1}, x_{k_2}, \dots, x_{k_n}) \text{ is 1}\}$

Some problems not known to be in P:

- $GI = \{\langle G_1, G_2 \rangle \mid \text{Graphs } G_1 \text{ and } G_2 \text{ are isomorphic}\}$
- $FACTOR = \{\langle x, l, u \rangle \mid x \text{ has a factor } y \text{ such that } l \leq y \leq u\}$

Complexity Class P

Complexity Class P

Why P captures efficiency?

Complexity Class P

Why P captures efficiency?

- Time bounds less than n do not allow to even read the entire input.

Complexity Class P

Why P captures efficiency?

- Time bounds less than n do not allow to even read the entire input.
- In practice, we find algorithms with time n^2, n^3 , etc. (not n^{30}, n^{100} , etc.).

Complexity Class P

Why P captures efficiency?

- Time bounds less than n do not allow to even read the entire input.
- In practice, we find algorithms with time n^2, n^3 , etc. (not n^{30}, n^{100} , etc.).
- Problems with first polytime algorithm with high complexity, say $O(n^{20})$, usually get

Complexity Class P

Why P captures efficiency?

- Time bounds less than n do not allow to even read the entire input.
- In practice, we find algorithms with time n^2, n^3 , etc. (not n^{30}, n^{100} , etc.).
- Problems with first polytime algorithm with high complexity, say $O(n^{20})$, usually get improved to, say $O(n^5)$.

Complexity Class NP

Complexity Class NP

Some problems not known to be in P:

Complexity Class NP

Some problems not known to be in P:

- $INDSET = \{\langle G, k \rangle \mid G \text{ has an independent set of size } k\}$

Complexity Class NP

Some problems not known to be in P:

- $INDSET = \{\langle G, k \rangle \mid G \text{ has an independent set of size } k\}$
- $HAMILTONIANCYCLE = \{\langle G \rangle \mid G \text{ has a hamiltonian cycle}\}$

Complexity Class NP

Some problems not known to be in P:

- $INDSET = \{\langle G, k \rangle \mid G \text{ has an independent set of size } k\}$
- $HAMILTONIANCYCLE = \{\langle G \rangle \mid G \text{ has a hamiltonian cycle}\}$
- $GI = \{\langle G_1, G_2 \rangle \mid \text{Graphs } G_1 \text{ and } G_2 \text{ are isomorphic}\}$

Complexity Class NP

Some problems not known to be in P:

- $INDSET = \{\langle G, k \rangle \mid G \text{ has an independent set of size } k\}$
- $HAMILTONIANCYCLE = \{\langle G \rangle \mid G \text{ has a hamiltonian cycle}\}$
- $GI = \{\langle G_1, G_2 \rangle \mid \text{Graphs } G_1 \text{ and } G_2 \text{ are isomorphic}\}$

Not polytime solvable,
but solutions are
verifiable in polytime.

Complexity Class NP

Some problems not known to be in P:

- $INDSET = \{\langle G, k \rangle \mid G \text{ has an independent set of size } k\}$
- $HAMILTONIANCYCLE = \{\langle G \rangle \mid G \text{ has a hamiltonian cycle}\}$
- $GI = \{\langle G_1, G_2 \rangle \mid \text{Graphs } G_1 \text{ and } G_2 \text{ are isomorphic}\}$

Not polytime solvable,
but solutions are
verifiable in polytime.

Informal Definition:

Complexity Class NP

Some problems not known to be in P:

- $INDSET = \{\langle G, k \rangle \mid G \text{ has an independent set of size } k\}$
- $HAMILTONIANCYCLE = \{\langle G \rangle \mid G \text{ has a hamiltonian cycle}\}$
- $GI = \{\langle G_1, G_2 \rangle \mid \text{Graphs } G_1 \text{ and } G_2 \text{ are isomorphic}\}$

Not polytime solvable,
but solutions are
verifiable in polytime.

Informal Definition: NP captures the set of decisions problems whose solutions can be

Complexity Class NP

Some problems not known to be in P:

- $INDSET = \{\langle G, k \rangle \mid G \text{ has an independent set of size } k\}$
- $HAMILTONIANCYCLE = \{\langle G \rangle \mid G \text{ has a hamiltonian cycle}\}$
- $GI = \{\langle G_1, G_2 \rangle \mid \text{Graphs } G_1 \text{ and } G_2 \text{ are isomorphic}\}$

Not polytime solvable,
but solutions are
verifiable in polytime.

Informal Definition: NP captures the set of decisions problems whose solutions can be verified in polynomial time.

Complexity Class NP

Some problems not known to be in P:

- $INDSET = \{\langle G, k \rangle \mid G \text{ has an independent set of size } k\}$
- $HAMILTONIANCYCLE = \{\langle G \rangle \mid G \text{ has a hamiltonian cycle}\}$
- $GI = \{\langle G_1, G_2 \rangle \mid \text{Graphs } G_1 \text{ and } G_2 \text{ are isomorphic}\}$

Not polytime solvable,
but solutions are
verifiable in polytime.

Informal Definition: NP captures the set of decisions problems whose solutions can be verified in polynomial time.

Note: NP stands for **nondeterministic polynomial time**.