
Lecture 32

P, NP

Two Sides of Computation

Two Sides of Computation

Possibility

Two Sides of Computation

Possibility

Impossibility

Two Sides of Computation

Possibility

Impossibility

: Algorithms

Two Sides of Computation

Possibility

Impossibility

: Algorithms

: Complexity Theory

Two Sides of Computation

Possibility

Impossibility

: Algorithms

: Complexity Theory

Deals with creating efficient algorithms for computational problems.

Two Sides of Computation

Possibility

Impossibility

: Algorithms

: Complexity Theory

Deals with creating efficient algorithms for computational problems.

Deals with proving non-existence of efficient algorithms for computational problems.

Two Sides of Computation

Possibility

Impossibility

: Algorithms

: Complexity Theory

Deals with creating efficient algorithms for computational problems.

Deals with proving non-existence of efficient algorithms for computational problems.

Mostly decision problems.

Search vs Decision Problem

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform

that no solutions exist.

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform

For instance,that no solutions exist.

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform

For instance,

SEARCH_PATH: Given a graph and vertices , , find a path from to or informG u v ∈ G u v

that no solutions exist.

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform

For instance,

SEARCH_PATH: Given a graph and vertices , , find a path from to or informG u v ∈ G u v

that no solutions exist.

if no such paths exist.

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform

Decision problems are computational problems where we have to decide whether

For instance,

SEARCH_PATH: Given a graph and vertices , , find a path from to or informG u v ∈ G u v

that no solutions exist.

if no such paths exist.

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform

Decision problems are computational problems where we have to decide whether

For instance,

SEARCH_PATH: Given a graph and vertices , , find a path from to or informG u v ∈ G u v

that no solutions exist.

if no such paths exist.

a solution exists.

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform

Decision problems are computational problems where we have to decide whether

For instance,

For instance,

SEARCH_PATH: Given a graph and vertices , , find a path from to or informG u v ∈ G u v

that no solutions exist.

if no such paths exist.

a solution exists.

Search vs Decision Problem

Search problems are computational problems where we have to find a solution or inform

Decision problems are computational problems where we have to decide whether

For instance,

For instance,

SEARCH_PATH: Given a graph and vertices , , find a path from to or informG u v ∈ G u v

DEC_PATH: Given a graph and vertices , , decide if a path from to exists.G u v ∈ G u v

that no solutions exist.

if no such paths exist.

a solution exists.

Search vs Decision Problem

Search vs Decision Problem
Solving DEC_PATH via SEARCH_PATH:

Search vs Decision Problem
Solving DEC_PATH via SEARCH_PATH:

1. Solve SEARCH_PATH on .(G, u, v)

Search vs Decision Problem
Solving DEC_PATH via SEARCH_PATH:

1. Solve SEARCH_PATH on .(G, u, v)

2. Answer Yes or No depending on the answer from the 1st step.

Search vs Decision Problem
Solving DEC_PATH via SEARCH_PATH:

1. Solve SEARCH_PATH on .(G, u, v)

2. Answer Yes or No depending on the answer from the 1st step.

Observation:

Search vs Decision Problem
Solving DEC_PATH via SEARCH_PATH:

1. Solve SEARCH_PATH on .(G, u, v)

2. Answer Yes or No depending on the answer from the 1st step.

Observation: If SEARCH_PATH is polynomial-time solvable, then so is DEC_PATH.

Search vs Decision Problem
Solving DEC_PATH via SEARCH_PATH:

1. Solve SEARCH_PATH on .(G, u, v)

2. Answer Yes or No depending on the answer from the 1st step.

Observation:

Search vs Decision Problem
Solving DEC_PATH via SEARCH_PATH:

1. Solve SEARCH_PATH on .(G, u, v)

2. Answer Yes or No depending on the answer from the 1st step.

Observation: If DEC_PATH is not polynomial-time solvable, then so is SEARCH_PATH.

Search vs Decision Problem
Solving DEC_PATH via SEARCH_PATH:

1. Solve SEARCH_PATH on .(G, u, v)

2. Answer Yes or No depending on the answer from the 1st step.

Observation: If DEC_PATH is not polynomial-time solvable, then so is SEARCH_PATH.

We will focus on decision problems because:

Search vs Decision Problem
Solving DEC_PATH via SEARCH_PATH:

1. Solve SEARCH_PATH on .(G, u, v)

2. Answer Yes or No depending on the answer from the 1st step.

Observation: If DEC_PATH is not polynomial-time solvable, then so is SEARCH_PATH.

We will focus on decision problems because:

• They are mathematically simple.

Search vs Decision Problem
Solving DEC_PATH via SEARCH_PATH:

1. Solve SEARCH_PATH on .(G, u, v)

2. Answer Yes or No depending on the answer from the 1st step.

Observation: If DEC_PATH is not polynomial-time solvable, then so is SEARCH_PATH.

We will focus on decision problems because:

• They are mathematically simple.

• Lower bounds for decision problems implies lower bounds for search problems.

Search vs Decision Problem
Solving DEC_PATH via SEARCH_PATH:

1. Solve SEARCH_PATH on .(G, u, v)

2. Answer Yes or No depending on the answer from the 1st step.

Observation: If DEC_PATH is not polynomial-time solvable, then so is SEARCH_PATH.

We will focus on decision problems because:

• They are mathematically simple.

• Lower bounds for decision problems implies lower bounds for search problems.

Search vs Decision Problem
Solving DEC_PATH via SEARCH_PATH:

1. Solve SEARCH_PATH on .(G, u, v)

2. Answer Yes or No depending on the answer from the 1st step.

Observation: If DEC_PATH is not polynomial-time solvable, then so is SEARCH_PATH.

We will focus on decision problems because:

• They are mathematically simple.

• Lower bounds for decision problems implies lower bounds for search problems.

Note: We will assume that in the problems an input is always provided in encoded binary form.

Complexity Class P

Complexity Class P

Defn: P is the set of decision problems that can be solved in polynomial time, i.e., ,O(nc)

Complexity Class P

Defn: P is the set of decision problems that can be solved in polynomial time, i.e., ,O(nc)
where and is the length of the input.c ≥ 0 n

Some problems in P:

Complexity Class P

Defn: P is the set of decision problems that can be solved in polynomial time, i.e., ,O(nc)
where and is the length of the input.c ≥ 0 n

Some problems in P:

• MULT = The th bit of is {⟨x, y, i⟩ ∣ i x ⋅ y 1}

Complexity Class P

Defn: P is the set of decision problems that can be solved in polynomial time, i.e., ,O(nc)
where and is the length of the input.c ≥ 0 n

Some problems in P:

• MULT = The th bit of is {⟨x, y, i⟩ ∣ i x ⋅ y 1}

Complexity Class P

Defn: P is the set of decision problems that can be solved in polynomial time, i.e., ,O(nc)

Binary encoding of and .x, y, i

where and is the length of the input.c ≥ 0 n

Some problems in P:

• MULT = The th bit of is {⟨x, y, i⟩ ∣ i x ⋅ y 1}

Complexity Class P

Defn: P is the set of decision problems that can be solved in polynomial time, i.e., ,O(nc)

Decision problems can be expressed as sets.

Binary encoding of and .x, y, i

where and is the length of the input.c ≥ 0 n

Some problems in P:

• MULT = The th bit of is {⟨x, y, i⟩ ∣ i x ⋅ y 1}

• PRIMES = is a prime number{⟨x⟩ ∣ x }

Complexity Class P

Defn: P is the set of decision problems that can be solved in polynomial time, i.e., ,O(nc)

Binary encoding of and .x, y, i

where and is the length of the input.c ≥ 0 n

Some problems in P:

• MULT = The th bit of is {⟨x, y, i⟩ ∣ i x ⋅ y 1}

• PRIMES = is a prime number{⟨x⟩ ∣ x }

Complexity Class P

Defn: P is the set of decision problems that can be solved in polynomial time, i.e., ,O(nc)

Binary encoding of and .x, y, i

where and is the length of the input.c ≥ 0 n

The polytime algorithm you have in your mind

is actually an exponential time algorithm.

Some problems in P:

• MULT = The th bit of is {⟨x, y, i⟩ ∣ i x ⋅ y 1}

• PRIMES = is a prime number{⟨x⟩ ∣ x }

Complexity Class P

Defn: P is the set of decision problems that can be solved in polynomial time, i.e., ,O(nc)

Binary encoding of and .x, y, i

where and is the length of the input.c ≥ 0 n

Some problems in P:

• MULT = The th bit of is {⟨x, y, i⟩ ∣ i x ⋅ y 1}

• PRIMES = is a prime number{⟨x⟩ ∣ x }

• SORT = The th bit of sorted sequence is {⟨x1, x2, …, xn, i⟩ ∣ i (xk1
, xk2

, …, xkn
) 1}

Complexity Class P

Defn: P is the set of decision problems that can be solved in polynomial time, i.e., ,O(nc)

Binary encoding of and .x, y, i

where and is the length of the input.c ≥ 0 n

Some problems in P:

• MULT = The th bit of is {⟨x, y, i⟩ ∣ i x ⋅ y 1}

• PRIMES = is a prime number{⟨x⟩ ∣ x }

• SORT = The th bit of sorted sequence is {⟨x1, x2, …, xn, i⟩ ∣ i (xk1
, xk2

, …, xkn
) 1}

Complexity Class P

Defn: P is the set of decision problems that can be solved in polynomial time, i.e., ,O(nc)

Some problems not known to be in P:

Binary encoding of and .x, y, i

where and is the length of the input.c ≥ 0 n

Some problems in P:

• MULT = The th bit of is {⟨x, y, i⟩ ∣ i x ⋅ y 1}

• PRIMES = is a prime number{⟨x⟩ ∣ x }

• SORT = The th bit of sorted sequence is {⟨x1, x2, …, xn, i⟩ ∣ i (xk1
, xk2

, …, xkn
) 1}

Complexity Class P

Defn: P is the set of decision problems that can be solved in polynomial time, i.e., ,O(nc)

Some problems not known to be in P:

• GI = Graphs and are isomorphic{⟨G1, G2⟩ ∣ G1 G2 }

Binary encoding of and .x, y, i

where and is the length of the input.c ≥ 0 n

Some problems in P:

• MULT = The th bit of is {⟨x, y, i⟩ ∣ i x ⋅ y 1}

• PRIMES = is a prime number{⟨x⟩ ∣ x }

• SORT = The th bit of sorted sequence is {⟨x1, x2, …, xn, i⟩ ∣ i (xk1
, xk2

, …, xkn
) 1}

Complexity Class P

Defn: P is the set of decision problems that can be solved in polynomial time, i.e., ,O(nc)

Some problems not known to be in P:

• GI = Graphs and are isomorphic{⟨G1, G2⟩ ∣ G1 G2 }

• FACTOR = has a factor such that {⟨x, l, u⟩ ∣ x y l ≤ y ≤ u}

Binary encoding of and .x, y, i

where and is the length of the input.c ≥ 0 n

Complexity Class P

Complexity Class P

Why P captures efficiency?

• Time bounds less than do not allow to even read the entire input.n

Complexity Class P

Why P captures efficiency?

• Time bounds less than do not allow to even read the entire input.n

• In practice, we find algorithms with time etc. (not etc.).n2, n3, n30, n100,

Complexity Class P

Why P captures efficiency?

• Time bounds less than do not allow to even read the entire input.n

• In practice, we find algorithms with time etc. (not etc.).n2, n3, n30, n100,

• Problems with first polytime algorithm with high complexity, say , usually get O(n20)

Complexity Class P

Why P captures efficiency?

• Time bounds less than do not allow to even read the entire input.n

• In practice, we find algorithms with time etc. (not etc.).n2, n3, n30, n100,

• Problems with first polytime algorithm with high complexity, say , usually get O(n20)

Complexity Class P

Why P captures efficiency?

improved to, say O(n5) .

Complexity Class NP

Complexity Class NP

Some problems not known to be in P:

Complexity Class NP

• INDSET = has an independent set of size {⟨G, k⟩ ∣ G k}

Some problems not known to be in P:

Complexity Class NP

• INDSET = has an independent set of size {⟨G, k⟩ ∣ G k}

• HAMILTONIANCYCLE = has a hamiltonian cycle{⟨G⟩ ∣ G }

Some problems not known to be in P:

Complexity Class NP

• INDSET = has an independent set of size {⟨G, k⟩ ∣ G k}

• HAMILTONIANCYCLE = has a hamiltonian cycle{⟨G⟩ ∣ G }

• GI = Graphs and are isomorphic{⟨G1, G2⟩ ∣ G1 G2 }

Some problems not known to be in P:

Complexity Class NP

• INDSET = has an independent set of size {⟨G, k⟩ ∣ G k}

• HAMILTONIANCYCLE = has a hamiltonian cycle{⟨G⟩ ∣ G }

• GI = Graphs and are isomorphic{⟨G1, G2⟩ ∣ G1 G2 }

Not polytime solvable,

but solutions are  
verifiable in polytime.

Some problems not known to be in P:

Complexity Class NP

• INDSET = has an independent set of size {⟨G, k⟩ ∣ G k}

• HAMILTONIANCYCLE = has a hamiltonian cycle{⟨G⟩ ∣ G }

• GI = Graphs and are isomorphic{⟨G1, G2⟩ ∣ G1 G2 }

Informal Definition:

Not polytime solvable,

but solutions are  
verifiable in polytime.

Some problems not known to be in P:

Complexity Class NP

• INDSET = has an independent set of size {⟨G, k⟩ ∣ G k}

• HAMILTONIANCYCLE = has a hamiltonian cycle{⟨G⟩ ∣ G }

• GI = Graphs and are isomorphic{⟨G1, G2⟩ ∣ G1 G2 }

Informal Definition:

Not polytime solvable,

but solutions are  
verifiable in polytime.

Some problems not known to be in P:

NP captures the set of decisions problems whose solutions can be

Complexity Class NP

• INDSET = has an independent set of size {⟨G, k⟩ ∣ G k}

• HAMILTONIANCYCLE = has a hamiltonian cycle{⟨G⟩ ∣ G }

• GI = Graphs and are isomorphic{⟨G1, G2⟩ ∣ G1 G2 }

Informal Definition:

Not polytime solvable,

but solutions are  
verifiable in polytime.

Some problems not known to be in P:

NP captures the set of decisions problems whose solutions can be

verified in polynomial time.

Complexity Class NP

• INDSET = has an independent set of size {⟨G, k⟩ ∣ G k}

• HAMILTONIANCYCLE = has a hamiltonian cycle{⟨G⟩ ∣ G }

• GI = Graphs and are isomorphic{⟨G1, G2⟩ ∣ G1 G2 }

Informal Definition:

Not polytime solvable,

but solutions are  
verifiable in polytime.

Some problems not known to be in P:

NP captures the set of decisions problems whose solutions can be

verified in polynomial time.

Note:NP stands for nondeterministic polynomial time.

