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Possibility

Impossibility

: Algorithms

: Complexity Theory

Deals with creating efficient algorithms for computational problems.

Deals with proving non-existence of efficient algorithms for computational problems.

Mostly decision problems.
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Search problems are computational problems where we have to find a solution or inform

Decision problems are computational problems where we have to decide whether

For instance,

For instance,

SEARCH_PATH: Given a graph  and vertices , , find a path from  to  or informG u v ∈ G u v

DEC_PATH: Given a graph  and vertices , , decide if a path from  to  exists.G u v ∈ G u v

that no solutions exist. 

if no such paths exist.

a solution exists.
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Search vs Decision Problem
Solving DEC_PATH via SEARCH_PATH:

1. Solve SEARCH_PATH on .(G, u, v)

2. Answer Yes or No depending on the answer from the 1st step.

Observation: If DEC_PATH is not polynomial-time solvable, then so is SEARCH_PATH.

We will focus on decision problems because:

• They are mathematically simple.

• Lower bounds for decision problems implies lower bounds for search problems.

Note: We will assume that in the problems an input is always provided in encoded binary form.
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• PRIMES =  is a prime number{⟨x⟩ ∣ x }

• SORT = The th bit of sorted sequence  is {⟨x1, x2, …, xn, i⟩ ∣ i (xk1
, xk2

, …, xkn
) 1}

Complexity Class P

Defn: P is the set of decision problems that can be solved in polynomial time, i.e., ,O(nc)

Some problems not known to be in P:

• GI = Graphs  and  are isomorphic{⟨G1, G2⟩ ∣ G1 G2 }

• FACTOR =  has a factor  such that {⟨x, l, u⟩ ∣ x y l ≤ y ≤ u}

Binary encoding of and .x, y, i

where  and  is the length of the input.c ≥ 0 n
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• In practice, we find algorithms with time etc. (not  etc.).n2, n3, n30, n100,

• Problems with first polytime algorithm with high complexity, say , usually get O(n20)

Complexity Class P

Why P captures efficiency?

improved to, say O(n5) .
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Complexity Class NP

• INDSET =  has an independent set of size {⟨G, k⟩ ∣ G k}

• HAMILTONIANCYCLE =    has a hamiltonian cycle{⟨G⟩ ∣ G }

• GI = Graphs  and  are isomorphic{⟨G1, G2⟩ ∣ G1 G2 }

Informal Definition:

Not polytime solvable, 

but solutions are  
verifiable in polytime.

Some problems not known to be in P:

NP captures the set of decisions problems whose solutions can be

verified in polynomial time.

Note:NP stands for nondeterministic polynomial time.


